Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 335
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
J Econ Entomol ; 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38625049

RESUMO

3-Hydroxyhexan-2-one (3-C6-ketol) has emerged as the most conserved pheromone structure within the beetle family Cerambycidae. In this study, we report the sex-specific production of this compound by males of 12 species of South American cerambycid beetles. Males of Chrysoprasis chalybea Redtenbacher and Mallosoma zonatum (Sahlberg) (Tribe Dichophyiini), and Ambonus lippus (Germar), Eurysthea hirta (Kirby), Pantonyssus nigriceps Bates, Stizocera plicicollis (Germar), and Stizocera tristis (Guérin-Méneville) (Elaphidiini) produced 3R-C6-ketol as a single component, whereas males of Neoclytus pusillus (Laporte & Gory) (Clytini), Aglaoschema concolor (Gounelle), Orthostoma abdominale (Gyllenhal) (Compsocerini), Dorcacerus barbatus (Olivier), and Retrachydes thoracicus thoracicus (Olivier) (Trachyderini) produced 3R-C6-ketol, along with lesser amounts of other compounds. In field trials testing 8 known cerambycid pheromone compounds, C. chalybea, E. hirta, and R. t. thoracicus were attracted in significant numbers to traps baited with 3-C6-ketol. A second field experiment provided support for the strategy of using the attraction of cerambycid species to test lures as a method of providing leads to their likely pheromone components. Because both sexes are attracted to these aggregation-sex pheromones, live beetles can be obtained from baited traps to verify they produce the compound(s) to which they were attracted, that is, that the compounds are indeed pheromone components.

2.
Pestic Biochem Physiol ; 200: 105832, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38582595

RESUMO

Moth insects rely on sex pheromones for long distance attraction and searching for sex partners. The biosynthesis of moth sex pheromones involves the catalytic action of multiple enzymes, with desaturases playing a crucial role in the process of carbon chain desaturation. However, the specific desaturases involved in sex pheromone biosynthesis in fall armyworm (FAW), Spodoptera frugiperda, have not been clarified. In this study, a Δ11 desaturase (SfruDES1) gene in FAW was knocked out using the CRISPR/Cas9 genome editing system. A homozygous mutant of SfruDES1 was obtained through genetic crosses. The gas chromatography-mass spectrometry (GC-MS) analysis results showed that the three main sex pheromone components (Z7-12:Ac, Z9-14:Ac, and Z11-16:Ac) and the three minor components (Z9-14:Ald, E11-14:Ac and Z11-14:Ac) of FAW were not detected in homozygous mutant females compared to the wild type. Furthermore, behavioral assay demonstrated that the loss of SfruDES1 resulted in a significant reduction in the attractiveness of females to males, along with disruptions in mating behavior and oviposition. Additionally, in a heterologous expression system, recombinant SfruDES1 could introduce a cis double bond at the Δ11 position in palmitic acid, which resulted in the changes in components of the synthesized products. These findings suggest desaturase plays a key role in the biosynthesis of sex pheromones, and knockout of the SfruDES1 disrupts sex pheromone biosynthesis and mating behavior in FAW. The SfruDES1 could serve as tool to develop a control method for S. frugiperda.


Assuntos
Mariposas , Atrativos Sexuais , Animais , Feminino , Masculino , Spodoptera/genética , Spodoptera/metabolismo , Atrativos Sexuais/metabolismo , Oviposição , Mariposas/genética , Ácidos Graxos Dessaturases/genética , Ácidos Graxos Dessaturases/química , Ácidos Graxos Dessaturases/metabolismo
3.
Insect Sci ; 2024 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-38616579

RESUMO

Sex pheromones, which consist of multiple components in specific ratios promote intraspecific sexual communications of insects. Plutella xylostella (L.) is a worldwide pest of cruciferous vegetables, the mating behavior of which is highly dependent on its olfactory system. Long trichoid sensilla on male antennae are the main olfactory sensilla that can sense sex pheromones. However, the underlying mechanisms remain unclear. In this study, 3 sex pheromone components from sex pheromone gland secretions of P. xylostella female adults were identified as Z11-16:Ald, Z11-16:Ac, and Z11-16:OH in a ratio of 9.4 : 100 : 17 using gas chromatography - mass spectrometry and gas chromatography with electroantennographic detection. Electrophysiological responses of 581 and 385 long trichoid sensilla of male adults and female adults, respectively, to the 3 components were measured by single sensillum recording. Hierarchical clustering analysis showed that the long trichoid sensilla were of 6 different types. In the male antennae, 52.32%, 5.51%, and 1.89% of the sensilla responded to Z11-16:Ald, Z11-16:Ac, and Z11-16:OH, which are named as A type, B type, and C type sensilla, respectively; 2.93% named as D type sensilla responded to both Z11-16:Ald and Z11-16:Ac, and 0.34% named as E type sensilla were sensitive to both Z11-16:Ald and Z11-16:OH. In the female antennae, only 7.53% of long trichoid sensilla responded to the sex pheromone components, A type sensilla were 3.64%, B type and C type sensilla were both 0.52%, D type sensilla were 1.30%, and 1.56% of the sensilla responded to all 3 components, which were named as F type sensilla. The responding long trichoid sensilla were located from the base to the terminal of the male antennae and from the base to the middle of the female antennae. The pheromone mixture (Z11-16:Ald : Z11-16:Ac : Z11-16:OH = 9.4 : 100 : 17) had a weakly repellent effect on female adults of P. xylostella. Our results lay the foundation for further studies on sex pheromone communications in P. xylostella.

4.
PeerJ ; 12: e17223, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38618573

RESUMO

Background: The beet armyworm, Spodoptera exigua (Hübner), is an important agricultural pest worldwide that has caused serious economic losses in the main crop-producing areas of China. To effectively monitor and control this pest, it is crucial to investigate its population dynamics and seasonal migration patterns in northern China. Methods: In this study, we monitored the population dynamics of S. exigua using sex pheromone traps in Shenyang, Liaoning Province from 2012 to 2022, combining these data with amigration trajectory simulation approach and synoptic weather analysis. Results: There were significant interannual and seasonal variations in the capture number of S. exigua, and the total number of S. exigua exceeded 2,000 individuals in 2018 and 2020. The highest and lowest numbers of S. exigua were trapped in September and May, accounting for 34.65% ± 6.81% and 0.11% ± 0.04% of the annual totals, respectively. The average occurrence period was 140.9 ± 9.34 days during 2012-2022. In addition, the biomass of S. exigua also increased significantly during these years. The simulated seasonal migration trajectories also revealed varying source regions in different months, primarily originated from Northeast China and East China. These unique insights into the migration patterns of S. exigua will contribute to a deeper understanding of its occurrence in northern China and provide a theoretical basis for regional monitoring, early warning, and the development of effective management strategies for long-range migratory pests.


Assuntos
Agricultura , Humanos , Animais , Spodoptera , Estações do Ano , Dinâmica Populacional , China/epidemiologia
5.
J Econ Entomol ; 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38517276

RESUMO

Sex pheromone analogs have high structural similarity to sex pheromone components. They also play a role in studying many agricultural pests. In our study, (Z, Z, Z)-3,6,9-nonadecadiene (Z3Z6Z9-19:Hy) was successfully synthesized, which is an analogue to 1 of 2 sex pheromone components of Ectropis grisescens Warren (Z, Z, Z)-3,6,9-octadecatriene (Z3Z6Z9-18:Hy), and it showed potential inhibition in experiments. In the electroantennogram test, Z3Z6Z9-19:Hy showed a dose-dependent response, and only measured half the response of Z3Z9-6,7-epo-18:Hy. However, the compound significantly reduced positive response of E. grisescens males by up to 70% in the Y-tube olfactometer. Furthermore, in the wind tunnel, it significantly inhibited all types of behavioral responses. The percentage of moths contacting the pheromone odor source was reduced even at the lowest dose tested. In silico study afterward, molecular docking results showed affinity between Z3Z6Z9-19:Hy and sensory neuron membrane protein 1. Our study revealed the potential of Z3Z6Z9-19:Hy as a sex pheromone inhibitor, which would provide new tools for monitoring and mating disruption of E. grisescens.

6.
Curr Biol ; 34(7): 1414-1425.e5, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38479388

RESUMO

To extract any adaptive benefit, the circadian clock needs to be synchronized to the 24-h day-night cycles. We have investigated if it is a general property of the brain's circadian clock to recognize social interactions as external time givers. Sociosexual interactions with the opposite sex are universal, prevalent even in the lives of solitary animals. The solitary adult life of the Spodoptera littoralis moth is singularly dedicated to sex, offering an ideal context for exploring the impact of sociosexual cues on circadian timekeeping. We have identified specific olfactory cues responsible for social entrainment, revealing a surprisingly strong influence of pheromone-mediated remote sociosexual interactions on circadian rhythms. Males' free-running rhythms are induced and synchronized by the sex pheromone that the female releases in a rhythmic fashion, highlighting a hierarchical relation between the female and male circadian oscillators. Even a single pulse of the sex pheromone altered clock gene expression in the male brain, surpassing the effect of light on the clock. Our finding of a daytime-dependent, lasting impact of pheromone on male's courtship efficacy indicates that circadian timing in moths is a trait under sexual selection. We have identified specific components of the sex-pheromone blend that lack mate-attractive property but have powerful circadian effects, providing rationale for their continued retention by the female. We show that such volatiles, when shared across sympatric moth species, can trigger communal synchronization. Our results suggest that the sex pheromone released by female moths entrains males' behavioral activity rhythm to ensure synchronized timing of mating.


Assuntos
Mariposas , Atrativos Sexuais , Animais , Masculino , Feminino , Spodoptera , Feromônios/metabolismo , Atrativos Sexuais/metabolismo , Ritmo Circadiano/genética
7.
Sci China Life Sci ; 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38523236

RESUMO

Volatile sex pheromones are vital for sexual communication between males and females. Females of the American cockroach, Periplaneta americana, produce and emit two sex pheromone components, periplanone-A (PA) and periplanone-B (PB). Although PB is the major sex attractant and can attract males, how it interacts with PA in regulating sexual behaviors is still unknown. In this study, we found that in male cockroaches, PA counteracted PB attraction. We identified two odorant receptors (ORs), OR53 and OR100, as PB/PA and PA receptors, respectively. OR53 and OR100 were predominantly expressed in the antennae of sexually mature males, and their expression levels were regulated by the sex differentiation pathway and nutrition-responsive signals. Cellular localization of OR53 and OR100 in male antennae further revealed that two types of sensilla coordinate a complex two-pheromone-two-receptor pathway in regulating cockroach sexual behaviors. These findings indicate distinct functions of the two sex pheromone components, identify their receptors and possible regulatory mechanisms underlying the male-specific and age-dependent sexual behaviors, and can guide novel strategies for pest management.

8.
Proc Biol Sci ; 291(2018): 20232518, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38444335

RESUMO

Mate recognition is paramount for sexually reproducing animals, and many insects rely on cuticular hydrocarbons (CHCs) for close-range sexual communication. To ensure reliable mate recognition, intraspecific sex pheromone variability should be low. However, CHCs can be influenced by several factors, with the resulting variability potentially impacting sexual communication. While intraspecific CHC variability is a common phenomenon, the consequences thereof for mate recognition remain largely unknown. We investigated the effect of CHC variability on male responses in a parasitoid wasp showing a clear-cut within-population CHC polymorphism (three distinct female chemotypes, one thereof similar to male profiles). Males clearly discriminated between female and male CHCs, but not between female chemotypes in no-choice assays. When given a choice, a preference hierarchy emerged. Interestingly, the most attractive chemotype was the one most similar to male profiles. Mixtures of female CHCs were as attractive as chemotype-pure ones, while a female-male mixture negatively impacted male responses, indicating assessment of the entire, complex CHC profile composition. Our study reveals that the evaluation of CHC profiles can be strict towards 'undesirable' features, but simultaneously tolerant enough to cover a range of variants. This reconciles reliable mate recognition with naturally occurring variability.


Assuntos
Reprodução , Atrativos Sexuais , Feminino , Masculino , Animais , Comunicação , Polimorfismo Genético , Reconhecimento Psicológico
9.
Chirality ; 36(3): e23658, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38414199

RESUMO

Diabrotica balteata LeConte is one of the most important polyphagous agricultural pests. The sex pheromone of this pest was synthesized using Evans asymmetric alkylation, ring-opening reaction of (R)-2-methyloxirane, SN 2 alkylation of secondary tosylate, and coupling of chiral tosylate with Grignard reagent as central strategies. The sex pheromone prepared herein would be useful to control D. balteata.


Assuntos
Besouros , Atrativos Sexuais , Animais , Estereoisomerismo , Alquilação
10.
J Chem Ecol ; 50(3-4): 122-128, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38388901

RESUMO

The scarab genus Osmoderma (Coleoptera: Scarabaeidae) includes several large species called hermit beetles that develop within dead and decaying hardwood trees. Males of at least three Palearctic species produce the aggregation-sex pheromone (R)-(+)-γ-decalactone, including the endangered O. eremita (Scopoli). However, hermit beetles have received less attention in the western hemisphere, resulting in a large gap in our knowledge of the chemical ecology of Nearctic species. Here, we identify (R)-( +)-γ-decalactone as the primary component of the aggregation-sex pheromone of the North American species Osmoderma eremicola (Knoch). Field trials at sites in Wisconsin and Illinois revealed that both sexes were attracted to lures containing (R)-(+)-γ-decalactone or the racemate, but only males of O. eremicola produced the pheromone in laboratory bioassays, alongside an occasional trace of the chain-length analog γ-dodecalactone. Females of the congener O. scabra (Palisot de Beauvois) were also significantly attracted by γ-decalactone, suggesting further conservation of the pheromone, as were females of the click beetle Elater abruptus Say (Coleoptera: Elateridae), suggesting that this compound may have widespread kairomonal activity. Further research is needed to explore the behavioral roles of both lactones in mediating behavioral and ecological interactions among these beetle species.


Assuntos
Besouros , Lactonas , Atrativos Sexuais , Animais , Besouros/fisiologia , Masculino , Feminino , Atrativos Sexuais/química , Atrativos Sexuais/farmacologia , Atrativos Sexuais/metabolismo , Lactonas/química , Lactonas/metabolismo , Lactonas/farmacologia , Feromônios/metabolismo , Feromônios/química , Feromônios/farmacologia
11.
J Agric Food Chem ; 72(8): 3904-3912, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38303158

RESUMO

The leaf skeletonizer, Pyrausta machaeralis (Lepidoptera: Crambidae), is a serious insect pest of teak (Tectona grandis) in China. The application of insect pheromones is widely applied as an environmentally friendly technology for integrated pest management (IPM). In the present study, crude extracts of sex pheromone glands of calling P. machaeralis females were collected and then analyzed using gas chromatography/electroantennographic detection (GC/EAD) and gas chromatography-mass spectrometry (GC-MS). The combination of infrared spectroscopy (IR) and nuclear magnetic resonance (NMR) spectrometry was used for structure identification. Afterward, their electrophysiological and behavioral activity was evaluated in the laboratory and field. Herein, we eventually determined two active components, E-11-tetradecenyl acetate (E11-14:Ac) and Z-11-tetradecenyl acetate (Z11-14:Ac), at a ratio of 96:4, as the sex pheromone of P. machaeralis. The identification of sex pheromones would facilitate the development of efficient strategies for monitoring and controlling the field populations of P. machaeralis.


Assuntos
Lepidópteros , Mariposas , Atrativos Sexuais , Animais , Feminino , Lepidópteros/fisiologia , Atrativos Sexuais/química , Mariposas/fisiologia , Feromônios/química , Cromatografia Gasosa-Espectrometria de Massas , Bioensaio
12.
Curr Res Insect Sci ; 5: 100072, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38314008

RESUMO

The vine mealybug, Planococcus ficus, is a significant pest of vineyards in all major grape growing regions of the world. This pest causes significant aesthetic damage to berry clusters through its feeding behavior and secretion of "honeydew", which leads to significant decreases in crop marketability. More importantly, the vine mealybug is a vector of several grapevine viruses which are the causal agent of grapevine leafroll disease, one of the most destructive and economically devastating diseases of the grape industry worldwide. As there is no cure for grapevine leafroll disease, the only control measures available to reduce its spread are to remove infected vines whilst simultaneously controlling mealybug populations. Using transcriptomic libraries prepared from male and female mealybugs and a draft genome, we identified and evaluated expression levels of members of the odorant receptor gene family. Interestingly, of the 50 odorant receptors identified from these P. ficus genetic resources, only 23 were found to be expressed in females, suggesting this flightless life stage has a decreased reliance on the olfactory system. In contrast, 46 odorant receptors were found to be expressed in the alate male life stage. Heterologous expression of eight of these receptors, along with the obligate co-receptor, Orco, in HEK293 cells allowed for the identification of two receptors that respond to lavandulyl senecioate, the sole constituent of the sex pheromone used by this species. Interestingly, one of these receptors, PficOR8, also responded to the sex pheromone used by the Japanese mealybug, Planococcus kraunhiae. The data presented here represent the first report of odorant receptor gene family expression levels, as well as the identification of the first sex pheromone receptor, in soft-scale insects. The identification of a receptor for the vine mealybug sex pheromone will allow for the development of novel, species-specific pest control tools and monitoring devices.

13.
Insects ; 15(2)2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38392558

RESUMO

The tea black tussock moth (Dasychira baibarana), a devastating pest in Chinese tea plantations, uses a ternary Type-II pheromone blend containing (3Z,6Z)-cis-9,10-epoxyhenicosa-3,6-diene (Z3,Z6,epo9-21:H), (3Z,6Z,11E)-cis-9,10-epoxyhenicosa-3,6,11-triene (Z3,Z6,epo9,E11-21:H), and (3Z,6Z)-henicosa-3,6-dien-11-one (Z3,Z6-21:11-one) for mate communication. To elucidate the P450 candidates associated with the biosynthesis of these sex pheromone components, we sequenced the female D. baibarana pheromone gland and the abdomen excluding the pheromone gland. A total of 75 DbP450s were identified. Function annotation suggested six CYPs were orthologous genes that are linked to molting hormone metabolism, and eight antennae specifically and significantly up-regulated CYPs may play roles in odorant processing. Based on a combination of comparative RNAseq, phylogenetic, and tissue expression pattern analysis, one CYP4G with abdomen specifically predominant expression pattern was likely to be the P450 decarbonylase, while the pheromone-gland specifically and most abundant CYP341B65 was the most promising epoxidase candidate for the D. baibarana sex pheromone biosynthesis. Collectively, our research laid a valuable basis not only for further functional elucidation of the candidate P450 decarbonylase and epoxidase for the sex pheromone biosynthesis but also for understanding the physiological functions and functional diversity of the CYP gene superfamily in the D. baibarana.

14.
Curr Biol ; 34(3): 568-578.e5, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38242123

RESUMO

Animals have endogenous clocks that regulate their behavior and physiology. These clocks rely on environmental cues (time givers) that appear approximately every 24 h due to the Earth's rotation; thus, most insects exhibit a circadian rhythm. One notable exception is the scarab beetle, Holotrichia parallela, a severe agricultural pest in China, Japan, South Korea, and India. Females emerge from the soil every other night, reach the canopy of host plants, evert an abdominal gland, and release a pheromone bouquet comprising l-isoleucine methyl ester (LIME) and l-linalool. To determine whether this circa'bi'dian rhythm affects the olfactory system, we aimed to identify H. parallela sex pheromone receptor(s) and study their expression patterns. We cloned 14 odorant receptors (ORs) and attempted de-orphanizing them in the Xenopus oocyte recording system. HparOR14 gave robust responses to LIME and smaller responses to l-linalool. Structural modeling, tissue expression profile, and RNAi treatment followed by physiological and behavioral studies support that HparOR14 is a sex pheromone receptor-the first of its kind discovered in Coleoptera. Examination of the HparOR14 transcript levels throughout the adult's life showed that on sexually active days, gene expression was significantly higher in the scotophase than in the photophase. Additionally, the HparOR14 expression profile showed a circabidian rhythm synchronized with the previously identified pattern of sex pheromone emission. 48 h of electroantennogram recordings showed that responses to LIME were abolished on non-calling nights. In contrast, responses to the green leaf volatile (Z)-3-henexyl acetate remained almost constant throughout the recording period.


Assuntos
Monoterpenos Acíclicos , Compostos de Cálcio , Besouros , Óxidos , Atrativos Sexuais , Animais , Feminino , Besouros/fisiologia , Receptores de Feromônios
15.
J Econ Entomol ; 117(1): 218-229, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38195198

RESUMO

Endoclita signifer Walker is the most destructive wood-boring pest of Eucalyptus in China, causing significant economic and ecological damage. As an insect of the primitive Lepidoptera family Hepialidae, E. signifer fly and mat for only 10-20 min at dusk. The courtship and mating behavior of E. signifer adults and whether male moths release sex pheromones are still unknown, especially since transitory flight survival strategies in primitive moths differ from advanced moths like noctuids. In this study, we first observed the courtship and mating behavior of E. signifer by considering the effects of space and then analyzed extracts of male hairbrushes using gas chromatography-electroantennogram detection. Our results indicated that during the courtship period, flying males form courtship fields, lekking, and chase flying females before mating with them; E. signifer were more successful in mating in larger spaces (Length × Width × Height = 9.6 × 7 × 4 m); 5 compounds in the hairbrushes of the male moths which elicited antennal responses of 2 sexes, despite at high concentrations. Combined with it, indicating that communication between male and female may rely on male sex pheromones. These findings can serve as a basis for studying the mechanisms of sex communication in E. signifer and developing sex pheromone-based trapping techniques.


Assuntos
Lepidópteros , Mariposas , Atrativos Sexuais , Feminino , Masculino , Animais , Atrativos Sexuais/farmacologia , Feromônios/farmacologia , Corte , Comportamento Sexual Animal , Mariposas/fisiologia
16.
Insect Sci ; 31(1): 173-185, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37269179

RESUMO

Pheromone receptors (PRs) are key proteins in the molecular mechanism of pheromone recognition, and exploring the functional differentiation of PRs between closely related species helps to understand the evolution of moth mating systems. Pheromone components of the agricultural pest Mythimna loreyi have turned into (Z)-9-tetradecen-1-yl acetate (Z9-14:OAc), (Z)-7-dodecen-1-yl acetate (Z7-12:OAc), and (Z)-11-hexadecen-1-yl acetate, while the composition differs from that of M. separata in the genus Mythimna. To understand the molecular mechanism of pheromone recognition, we sequenced and analyzed antennal transcriptomes to identify 62 odorant receptor (OR) genes. The expression levels of all putative ORs were analyzed using differentially expressed gene analysis. Six candidate PRs were quantified and functionally characterized in the Xenopus oocytes system. MlorPR6 and MlorPR3 were determined to be the receptors of major and minor components Z9-14:OAc and Z7-12:OAc. MlorPR1 and female antennae (FA)-biased MlorPR5 both possessed the ability to detect pheromones of sympatric species, including (Z,E)-9,12-tetradecadien-1-ol, (Z)-9-tetradecen-1-ol, and (Z)-9-tetradecenal. Based on the comparison of PR functions between M. loreyi and M. separata, we analyzed the differentiation of pheromone recognition mechanisms during the evolution of the mating systems of 2 Mythimna species.


Assuntos
Mariposas , Receptores Odorantes , Atrativos Sexuais , Feminino , Animais , Atrativos Sexuais/metabolismo , Receptores de Feromônios/genética , Receptores de Feromônios/metabolismo , Mariposas/fisiologia , Feromônios , Transcriptoma , Receptores Odorantes/genética , Receptores Odorantes/metabolismo , Acetatos/metabolismo
17.
Pest Manag Sci ; 80(2): 744-755, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37779104

RESUMO

BACKGROUND: Mythimna loreyi is an important agricultural pest with a sensitive sex pheromone communication system. To clarify the pheromone binding proteins (PBPs) and pheromone receptors (PRs) involved in sex pheromone perception is important for both understanding the molecular olfactory mechanism and developing a new pest control strategy in M. loreyi. RESULTS: First, the electroantennogram (EAG) assay showed that male M. loreyi displayed the highest response to the major sex pheromone component Z9-14:Ac, and higher responses to two minor components, Z7-12:Ac and Z11-16:Ac. Second, the fluorescence competition binding assay showed that PBP1 bound all three pheromones and other tested compounds with high or moderate affinity, while PBP2 and PBP3 each bound only one pheromone component and few other compounds. Third, functional study using the Xenopus oocyte system demonstrated that, of the six candidate PRs, PR2 was weakly sensitive to the major pheromone Z9-14:Ac, but was strongly sensitive to pheromone analog Z9-14:OH; PR3 was strongly and specifically sensitive to a minor component Z7-12:Ac; PR4 and OR33 were both weakly sensitive to another minor component, Z11-16:Ac. Finally, phylogenetic relationship and ligand profiles of PRs were compared among six species from two closely related genera Mythimna and Spodoptera, suggesting functional shifts of M. loreyi PRs toward Spodoptera PRs. CONCLUSION: Functional differentiations were revealed among three PBPs and six PRs in sex pheromone perception, laying an important basis for understanding the molecular mechanism of sex pheromone perception and for developing new control strategies in M. loreyi. © 2023 Society of Chemical Industry.


Assuntos
Mariposas , Atrativos Sexuais , Animais , Masculino , Atrativos Sexuais/farmacologia , Atrativos Sexuais/metabolismo , Filogenia , Mariposas/metabolismo , Feromônios/metabolismo , Percepção
18.
Pest Manag Sci ; 80(2): 577-585, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37735837

RESUMO

BACKGROUND: Sex pheromones have proven to be a viable tool for monitoring and controlling pests and is an important part of integrated pest management (IPM). The noctuid moth Macdunnoughia crassisigna Warren poses a significant threat as a defoliator pest, impacting soybean and cruciferous vegetable production and quality in East Asia. However, a lack of comprehensive knowledge about its sexual chemical signaling hampers the development of semiochemical-based IPM approaches for M. crassisigna. RESULTS: We first determined the mating rhythms of M. crassisigna. We then collected pheromones from the sex glands of virgin females at the mating peak and analyzed their components using gas chromatography-electroantennogram detection analysis. The results showed that three components elicited significant electrophysiological responses in male antennae. Gas chromatography-mass spectrometry analysis characterized these components as (Z)-7-dodecene acetate (Z7-12:OAc), (Z)-9-tetradecene acetate (Z9-14:OAc), and (Z)-11-hexadecen-1-ol (Z11-16:OH). Further field experiments indicated that the mixture of Z7-12:OAc and Z9-14:OAc at a ratio of 3:1 displayed significant attractivity to males, confirming its role as a putative sex pheromone of M. crassisigna. Long-term monitoring tests showed that traps baited with these pheromone lures effectively mirrored the population dynamics of M. crassisigna. CONCLUSION: This study successfully identified and validated the sex pheromone released by female M. crassisigna and formulated potent sex lures for field-based pest monitoring. These findings enriched our understanding of chemical communication in Noctuidae and laid a foundation for developing practical monitoring and control methods against M. crassisigna. © 2023 Society of Chemical Industry.


Assuntos
Lepidópteros , Mariposas , Atrativos Sexuais , Feminino , Masculino , Animais , Lepidópteros/fisiologia , Atrativos Sexuais/farmacologia , Atrativos Sexuais/química , Cromatografia Gasosa-Espectrometria de Massas , Mariposas/fisiologia , Feromônios , Acetatos
19.
Pest Manag Sci ; 2023 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-38041609

RESUMO

BACKGROUND: Bactrocera minax is a devastating pest of citrus fruits. However, there have been no effective control measures before. Few reports on the sex pheromones of B. minax are available. RESULTS: In this study, nine of the volatile compounds in adult females were identified using headspace solid-phase microextraction (HS-SPME) in combination with gas chromatography-mass spectrometry (GC-MS). Among them, d-limonene, caprolactam, 2-Nitro-1H-imidazole, and creatinine could evoke antennal responses in males. Field bioassays showed that only d-limonene could lure male flies, with a relative lure rate of 78.18% in all tested samples, which was significantly higher than that of paraffin oil control, while all volatile compounds did not have any lure effective to female flies. Moreover, d-limonene was diluted with paraffin oil into differential concentrations, the lure effect on males was better at 100, 500, and 800 µL d-limonene mL-1 than pure d-limonene (1000 µL mL-1 ). The relative male lure rate of d-limonene at 100 µL mL-1 was 85.88%, which was significantly higher than that of food-baits (14.12%) on day 3. However, d-limonene was unattractive to female and male Bactrocera dorsalis and Zeugodacus tau. Further kinetic analysis showed that female adults released d-limonene around 15-day post eclosion. Electroantennography 1 results showed that 500 µL mL-1 d-limonene evoked the strongest responses to antennae of 10- to 25-day-old male flies. CONCLUSION: Our results indicated that d-limonene could be a sex pheromone from female flies of B. minax, and it could be used as a male-specific sex attractant for B. minax. © 2023 Society of Chemical Industry.

20.
Nano Lett ; 23(24): 11809-11817, 2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38048290

RESUMO

Insect sex pheromones as an alternative to chemical pesticides hold promising prospects in pest control. However, their burst release and duration need to be optimized. Herein, pheromone-loaded core-shell fibers composed of degradable polycaprolactone and polyhydroxybutyrate were prepared by coaxial electrospinning. The results showed that this core-shell fiber had good hydrophobic performance and thermal stability, and the light transmittance in the ultraviolet band was only below 40%, which provided protection to pheromones. The core-shell structure alleviated the burst release of pheromone in the fiber and extended the release time to about 133 days. In the field, the pheromone-loaded core-shell fibers showed the same continuous and efficient trapping of Spodoptera litura as the commercial carriers. More importantly, the electrospun fibers combined with biomaterials had a degradability unmatched by commercial carriers. The structure design strategy provides ideas for the innovative design of pheromone carriers and is a potential tool for the management of agricultural pests.


Assuntos
Materiais Biocompatíveis , Feromônios
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...